
Stephen Checkoway

Programming Abstractions
Lecture 30: Promises

Promises

Some new Scheme special forms

(delay exp) returns an object called a promise, without evaluating exp

(force promise) evaluates the promised expression and returns its value

‣ A promised expression is evaluated only once, no matter how many times it is

evaluated!

What does this code print?

(let* ([x 10]

 [f (λ () (add1 (* 3 x)))]

 [p (delay (add1 (* 3 x)))])

 (printf "(force p)=~s (f)=~s\n" (force p) (f))

 (set! x 4)

 (printf "(force p)=~s (f)=~s\n" (force p) (f)))

A. (force p)=31 (f)=31  
(force p)=31 (f)=16

B. (force p)=31 (f)=31  
(force p)=16 (f)=16

C. (force p)=31 (f)=31  
(force p)=16 (f)=31

D. (force p)=31 (f)=31  
(force p)=31 (f)=31

3

What happens if we comment out the first printf?

(let* ([x 10]

 [f (λ () (add1 (* 3 x)))]

 [p (delay (add1 (* 3 x)))])

 ; (printf "(force p)=~s (f)=~s\n" (force p) (f))

 (set! x 4)

 (printf "(force p)=~s (f)=~s\n" (force p) (f)))

A. (force p)=31 (f)=16

B. (force p)=16 (f)=16

C. (force p)=16 (f)=31

D. (force p)=31 (f)=31

E. (force p)=16 (f)=16

4

Example

(define foo

 (delay

 (begin

 (displayln "Promise is evaluated")

 2)))

(force foo) ; prints "Promise is evaluated"; returns 2

(force foo) ; returns 2

(force foo) ; returns 2

Example

(define foo

 (delay

 (begin

 (displayln "Promise is evaluated")

 2)))

(force foo) ; prints "Promise is evaluated"; returns 2

(force foo) ; returns 2

(force foo) ; returns 2

begin not needed in Racket

delay allows arbitrary number

of expressions

Implementing delay and force

Before we talk about why we might want this, let's talk about how we can

implement it

First attempt: define delay as a procedure that returns a procedure

(define (delay exp)

 (λ ()

 exp))

(define (force promise)

 (promise))

What goes wrong with this definition?

(define (delay exp)

 (λ ()

 exp))

(define (force promise)

 (promise))

A. When you know what goes wrong, select this choice

7

Evaluation isn't delayed

(delay

 (displayln "Lazy evaluation would be nice"))

Since delay was implemented as a procedure, its argument is evaluated when

delay is called

force will correctly return the value, but it was already computed; we need to

delay the computation until force is called

We need a macro!

Let's think about what we want

We want

(delay exp)

to become something like

(λ () exp)

Second attempt: define delay as a macro which produces a λ

(define-syntax delay

 (syntax-rules ()

 [(_ exp) (λ () exp)]))

(define (force promise)

 (promise))

Example

(define foo

 (delay

 (begin

 (displayln "This time, it's lazy!")

 10)))

This successfully defines foo as

(λ ()

 (begin

 (displayln "This time, it's lazy!")

 10))

and it doesn't evaluate until (force foo)

What goes wrong with this definition?

(define-syntax delay

 (syntax-rules ()

 [(_ exp) (λ () exp)]))

(define (force promise)

 (promise))

A. When you know what goes wrong, select this choice

11

Each time we force the promise, it's evaluated

(force foo) ; prints "This time it's lazy"; returns 10

(force foo) ; prints "This time it's lazy"; returns 10

(force foo) ; prints "This time it's lazy"; returns 10

We're going to need some mutation

We need to remember two things

‣ Has the promise been forced yet?

‣ If so, what was the value?

What we really want

We want

(delay exp)

to become something like

(let ([evaluated #f]

 [value 0])

 (λ ()

 (if evaluated

 value

 (begin

 (set! value exp)

 (set! evaluated #t)

 value))))

When the result is forced (i.e.,

called) the first time

‣ exp will be evaluated

‣ value will be set to the result

‣ evaluated will be set to #t

‣ value is returned

On subsequent calls

‣ value is returned

When would we use promises?

We can build an infinite data structure like an infinite list, tree, or graph

‣ An infinite list of primes

‣ The Fibonacci sequence

Concurrent execution

‣ Creating the promise starts a thread that performs the computation

‣ Forcing the promise causes the current thread to wait until the computing

thread has finished before returning the answer

Promises in Racket

We're going to use Racket's promises

(require racket/promise) — Loads the library

(delay body ...+) — Returns a promise that when forced evaluates the

body expressions

(delay/thread body ...+) — Starts evaluating the body expressions on

another thread and returns a promise that when forced waits for the execution

to complete and returns the value

(force promise) — Force the promise

Let's build an infinite list of primes

First, we need to think about how we want to represent this

Let's use a cons cell where

‣ the car is a prime; and

‣ the cdr is a promise which will return the next cons cell

2 #<promise>

Let's build an infinite list of primes

First, we need to think about how we want to represent this

Let's use a cons cell where

‣ the car is a prime; and

‣ the cdr is a promise which will return the next cons cell

2 #<promise>

3 #<promise>

force

Let's build an infinite list of primes

First, we need to think about how we want to represent this

Let's use a cons cell where

‣ the car is a prime; and

‣ the cdr is a promise which will return the next cons cell

2 #<promise>

3 #<promise>

5 #<promise>

force

force

The uninteresting piece: checking primality

(define (prime? n)

 (cond [(= n 2) #t]

 [(even? n) #f]

 [else (not

 (ormap

 (λ (m) (zero? (remainder n m)))

 (range 3

 (add1 (exact-floor (sqrt n)))

 2)))]))

Does the simple thing and checks if dividing n by any odd m up to gives

remainder 0

n

The interesting piece: building the list

next-prime checks if n is prime and if so, returns a cons cell containing n and

a promise to construct the next one; otherwise it recurses on n+2

(define (next-prime n)

 (cond [(prime? n) (cons n

 (delay (next-prime (+ n 2))))]

 [else (next-prime (+ n 2))]))

primes returns a cons cell containing 2 and a promise to construct the next

one

(define (primes)

 (cons 2

 (delay (next-prime 3))))

Infinite list in action!

> (define prime-lst (primes))

> prime-lst

'(2 . #<promise>)

> (force (cdr prime-lst))

'(3 . #<promise>)

> (force (cdr (force (cdr prime-lst))))

'(5 . #<promise>)

> prime-lst

'(2 . #<promise!(3 . #<promise!(5 . #<promise>)>)>)

Using our list

(define (print-until n prime-lst)

 (let ([prime (car prime-lst)])

 (if (<= prime n)

 (begin

 (displayln prime)

 (print-until n (force (cdr prime-lst))))

 prime-lst))) ; Return the remainder of the list

Using our list

> (print-until 15 prime-lst)

2

3

5

7

11

13

'(17 . #<promise>)

Concurrent execution

(require racket/promise)

(displayln "Before")

(define p (delay/thread

 (sleep 5)

 (displayln "Done!")

 42))

(displayln "During computation")

(force p)

(displayln "After")

What is the most likely output of

(define p1 (delay (println "Hello!")))

(define p2 (delay/thread (println "Goodbye!")))

(sleep 1) ; Wait one second

(force p1)

(force p2)

A. Hello!  

Goodbye! 

Hello!  

Goodbye!

B. Hello!  

Goodbye!

C. Goodbye! 

Hello!  

Hello!  

Goodbye!

D. Goodbye! 

Hello!

24

Promises in other languages

JavaScript has async which starts some potentially long-running calculation or

(more typically) starts loading a resource from the Internet and returns a promise

This is paired with await which waits for the promise to finish computing/

resource to download and returns the answer

Rust has something similar

